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Decoherence in Bose-Einstein condensates: Towards bigger and better Sotlirger cats
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We consider a quantum superposition of Bose-Einstein conden@&i3s) in two immiscible internal
states. A decoherence rate for the resulting Sdihger cat is calculated and shown to be a significant threat to
this macroscopic quantum superposition of BEC’s. An experimental scenario is outlined where the decoher-
ence rate due to the thermal cloud is dramatically reduced thanks to trap engineering and “symmetrization” of
the environment, which allow the Scliioger cat to be an approximate pointer state.

PACS numbeg(s): 03.75.Fi, 03.65-w

I. MOTIVATION AND SUMMARY OF RESULTS is the thermal velocity in the noncondensed thermal cleud,
is the scattering lengthy is the volume of the trap, andg is
Microscopic quantum superpositions are an everydayhe number of atoms in the thermal cloud,

physicist’s experience. Macroscopic quantum superpositions,
despite nearly a century of experimentation with quantum 3
mechanics, are still encountered only very rarely. Fast deco- NE%e,u/kBT<kB_T) _ @)
herence of macroscopically distinct states is to be blamed fiw
[1]. In spite of that, recent years have witnessed an interest-
ing quantum optics experimef&] on decoherence of a few
photon superpositions. Moreover, matter-wave interferenc
in fullerene Gy has been observeg®]. Another recent ex-
periment has succeeded in “engineering” the environmen
in the context of trapped iongt]. This success plus rapid
progress in Bose-Einstein condensati®EC) of alkali-

Ie—lere,u<0 is the chemical potential.

Equation(1) gives the rate of decoherence to leading or-
er in the fugacityz=exp(Bu) and also to leading order in
he condensate siz&l. Next-to-leading-order terms are

0O(z%) and O(N), in agreement with Refd9,10], so they

metal atomic vaporg5] tempt one to push similar investiga- were neglected here. We _also assume thist small enough
for a condensate to exist in a single mode as opposed to the

tions even further into the macroscopic domain. The CondenlérgeN Thomas-Fermi limit. Given all these assumptions, in
sates can contain up to 18toms in the same quantum state. he standard harmonic trap.setting ED).is a lower estimaté

What is more, it is possible to prepare condensates in tw r the decoherence rate
different internal states of the atoms. Some of these pairs of Even without doin info details of our derivation. which
internal levels are immiscible, and their condensates tend tg . . going ’

re given in Sec. IV, it is easy to understand where a formula

phase separate into distinct domains with definite intern f 2 .
states[6]. The immiscibility seems to be a prerequisite to ke Eq. (1) comes fromN*® is the main factor that makes the

preparing a quantum superposition in which all atoms are irgecoherence rate Iar_ge. It comes from the master gquatlon of
one or the other internal statéy)=(|N,0)+|0N))/y2,  Bloch-Lindblad formp~—[Na—Ng,[Na—Ng,p]], with A
whereN is the total number of condensed atoms, There are ZndB the two internal states of the atoni¢? is the distance
least two theoretical proposals of preparing a macroscopigduared between macroscopically different components of
quantum superposition in this framewofk,g]. Neither of the superposition|N,0)+|0N))/2—the common-wisdom
them addresses the crucial question of decoherence. reason why macroscopic objects are clasgithlThe factor

We find the quantum superposition state involving a sigin brackets in Eq(1) is the scattering rate of a condensate
nificant number of BEC atoms to be practically impossible inatom on noncondensate atoms—the very process by which
the standard harmonic trap. Our master equatitetived in the thermal cloud environment learns the quantum state of
Sec. IV), when applied to the standard harmonic trap of fre-the system.

quencyw, gives for the decoherence rate due to the environ- Let us estimate the decoherence rate for a set of typical
ment of noncondensed atoms parameterS:T=1 ,LLK, w=50 Hz, anda=3-5 nm. The

thermal velocity isvt~10"2 m/s. The volume of the trap

~ N can be approximated bWw=4mal, {3, where a
1_ 3 2 E 2 retur return
toec~ 1677 4ma”y UT) N%, @ - V2kgT/mw? is the return point in a harmonic trap at the

energy ofkgT. We estimate the decoherence timetgs
whereN is the number of condensed atorog=\2kgT/m  ~10° s/(NgN?). For Ne=10°-10* and N=10-10 it can
range from 1000 s down to 163s. For N=10 our
(overn estimate forty. is large. However, foN=1000 and

*Electronic address: dalvit@lanl.gov Ng=10 (which are still below the Thomas-Fermi regime
"Electronic address: dziarmaga@t6-serv.lanl.gov tgec has already shrunk down to milliseconds. Given that our
*Electronic address: whz@lanl.gov tgec IS @n upper estimate and that big condensates are more
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interesting as Schdinger cats, it is clear that for the sake of in the trap eigenstate numbersdvith trap eigenenergy of

the cat’s longevity, one must go beyond the standard hareg. Sg has energy §,—\) and Og4 has energy ;+\). The

monic trap setting. symmetric and antisymmetritE bands of states can be vi-
From Egs.(1) and(2) it is obvious that the decoherence sualized as two ladders shifted with respect to each other by

rate depends greatly on temperature and on chemical poteBA. In other words, the two sets of states experience the

tial. The two factors strongly influence botiiz and v+. same, but shifted, trapping potentials(V¥j is satisfied, then

Both can be improved by the following scenario, which is athe antisymmetricOg's are nearly empty since they can

combination of present day experimental techniques. In thevaporate into symmetric states and then leave the trap. The

experiment of Refl11] a narrow optical dip was superposed symmetricSy's cannot distinguish betweeh andB so they

at the bottom of a wide magnetic trap. The parameters of thdo not destroy the quantum coherence between the Schro

dip were tuned so that it had just one bound state. The gaginger cat's components. After symmetrizatid¥g in Eq.

between this single condensate mode and the first excited) has to be replaced by the final number of atoms in the

state was 1.5uK, which atT=1 uK gives a fugacity of antisymmetric states only:

z=exp(—1.5). We need the gap so that we can use the

single-mode approximation. At low temperatures, the gap

results in a small fugacity, which is convenient for calcula- o nexd (uw—N)/kgT], for 2A<AE

tions. We propose to prepare a condensate inside a similar Ng~ 0 for 2\ >AE. 3

combination of a wide magnetic and a narrow optical ti@p

more generally a wide well plus a narrow dip with a single

bound modgand then to open the magnetic trap and let the o e T j5 the temperature before opening the wide trapis
noncondensed atoms disperse. The aim is to get rid of the nymper of antisymmetric bound states that remain within
thermal cloud as much as possible. A similar technique wag§ o A E pand of symmetric states. Atoms in these antisym-

USEI“_d tm the te_:xpeirlrtr;]ent I(t)'f Ri{ﬂlz_]‘ it for the effici  thi metric bound states cannot disperse away. Ror AE this
et us esimate the ulimate imit for the €fficiency ot this numbern, is zero and there is no decoherence from the
technique. At the typical initial temperature of AK the thermal cloud

thermal velocity of atoms is IG m/szi An atom with this In this perfect symmetrization limit the statels-)
velocity can cross a lum dip in 10° s. If we wait for, =(|N,0)=|0,N))/\/2 exist within a decoherence-free pointer

say, 1 s after opening the wide trap, then all atoms with : :
velocities above 10° m/s will disperse away from the dip. subspace of the Hilbert space, since they have degenerate

A thermal velocity of 10 m/s corresponds to the tempera- eigenvalues of the interaction Hamiltoniah[14-16. Any

ture of 108 uK. As the factorNevy~T"2 in Eq. (1), then state of that subspace can be written ¢#&l,0) + 8|O,N),

1 s after opening the wide trap the decoherence rate due }ngmrlé?eitgpgftg?rrgglgﬁbnsl:)rgsgr?hg[“‘N'°>+/3‘°'N>] denotes a

noncondensed atoms is already reduced by a factor o#¢10

It is not realistic to expect such a “cosmological” reduc-
tion factor. The “dip” that is left after the wide harmonic
trap is gone could be, for example, a superposition of an
ideal dip plus a wide shallow wellwhich was a negligible
perturbation in the presence of the wide harmonic)trdipe  which means that any quantum superpositiaiN,0)
well would have a band of widtAE of bound states which + 8|0,N) in the subspace is an eigenstate of the system op-
would not disperse but preserve their occupation numbersrators in the interaction Hamiltoniata perfect pointer
from before the opening of the wide trap. They would stay instatg, and as such will retain its phase coherence and last
contact with the condensate and continue to “monitor” its forever. The interaction Hamiltonian between the condensate
guantum state. Even if such a truncated environment happersd the thermal cloud is the sum of products of condensate
to be already relatively harmless, there are means to do betteperators and environmental operators. Only terms with
than that. symmetric environmental operators are relevant because the

Further reduction of the decoherence rate can be achieveahtisymmetric states are empty. The total Hamiltonian is
by “symmetrization” of the environmental state. Perfect symmetric with respect td« B so, to preserve this symme-
symmetrization can be obtained provided tiaatoms have try, the relevant terms with symmetric environmental opera-
two internal state$A) and|B), (i) |A) and|B) experience tors also contain symmetric condensate operators. The argu-
the same trap potentidliji) A-A andB-B scattering lengths ment simplifies greatly for small fugacity where there is only
are the same(iv) the Hamiltonian has a term that drives one leading term with th&l,+ Ng condensate operator. The
coherent transition&«— B with a frequency of\/%, and(v)  states|*) are its eigenstates with the same eigenvaiue
AE<N\. The term in(iv) can be realized by driven coherent They are alsdalmos) degenerate eigenstates of the conden-
transitions as in the experiments of RefE3]. sate Hamiltonian built out o, g. The coherent transitions

Given an ideal symmetry betwegnand B [assumptions A« B break this degeneracy ¢ft) but the difference of
(i)—(iii)], the eigenmodes of the dilute environment have antheir eigenfrequencies is negligible as compared to the usual
nihilation operatorsS;~ (as+bs) and Os~(as—bg), which  condensate lifetime of 10 s. In the next-to-leading order in
are symmetric and antisymmetric, respectivalyandbg are  fugacity there are symmetric interaction terms which change
annihilation operators for the two internal states of an atonthe number of condensed atoms. These terms drivENi®

[V, Praino+ slon 1= 0, (4)
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and |ON) states into slightly “squeezedlike” statds$,0) Il. SYMMETRIZED ENVIRONMENT
and |0,S), respectively[17]. There are also terms that ex-
changeA with B. They give each state a small admixture of
the opposite component. Superpositions of these are still

We introduce annihilation operators fpk) and|B),

decoherence-free pointer subspaces—there are no relevant ¢A(§)=ag(§)+2 asus(i),
antisymmetric operators to destroy their quantum coherence. s

When the antisymmetric environmental states begin to be ®)
pccup|ec[see I_Eq(3)], then the commlutann relation E@[L_) ¢B(>Z)= bg()?) + E bsUs(i),

is only approximate and states within the subspace will de- s

cohere. To leading order in fugacity and condensate size, the
decoherence rate is given by Eq$) and (3). whereg(x) is the ground state wave function localized in the
This pointer subspace is not perfect—its existence is irdip with energye;<0, ands is an index running over ex-
apparent contradiction with the finite lifetimes of the conden-cited (environmental states with orthonormal wave func-
sates, which can last for at most 10—20 s. The reason is th@gbns Us(i)- The Hamiltonian of the system is
the thermal cloud is not the only source of decoherence. The
condensate loses atoms because of Rayleigh scattering, ex- 3
ternal heating, and three-body decay. The atoms that escadé:f dx
from the condensate carry information about its quantum
state. They destroy its quantum coherence. Three-body de-
cay, the last process of the three above, is the most important
one[11]. In the experiment of Ref.11] the measured loss
rate per atom was 4/s fdl=10", or around 1 atom per Here u=4mh2asa/m (apa=agg are the interscattering
10°7 s. The last rate scales like¢3 so already foN=10* lengthg and v=4n#i%ars/m (asg is the intrascattering
just one atom is lost per second; the decoherence time is 1 kngth. The immiscibility assumption implies>u. U(r) is
Another possibility is to increase the dip radius slightly. Thethe trap potential andl is the strength of the coherent driving
loss rate scales like density squared so an increase in the difnsitionsA< B. Substitution of Eq.5) into Eq. (6) and
width by a factor of 2 reduces the loss rate by a factor ofsubsequent linearization gives a Hamiltonian for the dilute

u
0(dad)(Shbe) +| 5 BASALAdA+ VDLV G

+U(r) prda—Ndads | +{A—BL. (6)

26—64. environment:

Ambient magnetic fields are yet another source of coher-
ence loss[18]. The c_ondensed atoms have magnetic mo- He= >, [efalas+blbs)—\(albs+blag)]. (7)
ments. If the magnetic moments &fand B were different s

the magnetic field would distinguish between them and
would introduce an unknown phase into the quantum super€s iS the single-particle energy of levelWe take the lowest
position, thus rendering its underlying coherent nature unde€nviromental energy mie)=0. The transformation
tectable. Fortunately, the much usggmg)=12,1),/1,— 1)
states of®’Rb have the same magnetic moments. For them _ast bs 0 _as_bs ®)
the magnetic field is a “symmetric” environmeft8]. 2 T 2
One more source of decoherence is the typiedl% dif-
ference between th&-A andB-B scattering lengths, which bringsHg to a diagonal form:
violates the assumptiofiii) above. The Hamiltonian is not
perfectly symmetric undef«— B. Even for a perfectly sym-
metrized environment, symmetric environmental operators HE:ES: [(es=N)SSet (€5+1)0305]. ©
couple to not fully symmetric condensate operators. This
means that for the 1% difference of scattering lengths symsymmetricS's and antisymmetridO’s form two identical
metrization can improve the decoherence time by at moskdders of states but shifted with respect to each othenby 2
two orders of magnitude as compared to the unsymmetrizetthere is a gap{ A — €5) >0 between the lowes; state and
environment. the ground state. In equilibrium the sta®g's occupation
In summary, we outlined a BEC scenario for an experi-number isng=14exd S(es—\—ey)]—L=~zexd —Bes—\)],
mental realization of a decoherence-free Sdhmger cat.  where the fugacityy=exp(— Blgy|) is assumed to be small.
This scenario has two ingredientd) opening of the wide The O.'s occupation number igso~n§exp(—2,3)\)_ If 2\
trap followed by an evaporation of the thermal cloud, &d  >1, then theO’s would be nearly empty. The condensate
symmetrization of the environment. The Sdfirger cat is  two-mode Hamiltonian is
expected to be a quantum superposition of number eigen-
states|N,0) and|O,N). Uc
More details can be found in Secs. lI-IV, where we studyHc=¢€g(a’a+b'b)—\(a'b+ bTa)+§(aTaTaa+ b'bbb)
the decoherence rate and the idea of the symmetrized envi-
ronment. Finally, Sec. V contains discussion. +v.(a'b’ab), (10)
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where, e.g.u.=ufd3xg*(x) andv.>U.. This Hamiltonian ~ The lower|+) and the highef—) states are separated by a
was studied in detail in[7,19]. For a purity factore  small energy gap oN(u.—vc)elne. If we just havee<1,
=[N (ve—Uug)N]N<1 the lowest energy subspace containsthe |+) states contain an admixture of intermediate states
two macroscopic superpositions, IN—-1,1), ... [LN—1) such that their overlap i¢+|—)

=e€. For e>1 they shrink to

1 1 tophN
)= @)+ (BDM00=Z(N.O+ON)), (@'+b)70,0. (12)
(11)  From now on we assume the pure cas€,l.
1 1 Finally, the interaction Hamiltoniak, which contains all
|-)= [(@HN=(b")N]|0,00= ——=(|N,0)— |ON)). condensate-noncondensate vertices, is the sum of a symmet-
J2N! V2 ric

Vs=[(4u+2v)(a'a+b'b)+(2v)(a’b+b'a)]® +[(u+v)(@'+bMHl®

N
E SslsszaSISZ

Sl ,52

2 821852853:8 515253

S15283

+H.c.+[(4u+2v)(ata+b'b)—(2v)(a’b+bta)]®

¥
2 Osloszafszs2
51,52

+H.c. (13

+ [aT"' bT] ®| (u—v) z 821052053185132334' (4u) E 021052833,8315253

S15,S3 S15553

and an antisymmetric part

(4u+2v)(ata+b'h)® SE; S;rlsszas;szyp[zﬂN,o)+ﬁ|o,N)]
1192

Vo=[(4u—2v)(a’a-b'b)+(2v)(a'b—b'a)]

=0. (16)
®| X SO, +He|+[a'-b]
S1:52 ! This commutator vanishes because states of the form
a|N,0)+ B|ON) are eigenstates dfic=a'a+b'b. There-
® 2 Bsss((U+p)Ol O, 0, +(u—v)Ol S S, fore, this subspace would be a pointer subsgaég if this
sS85 Lo e v leading term were the only term in the interaction Hamil-
tonian. However,Vg has other terms that are not simply
+(2u)S§lSSZOSS) +H.c. (14)  functions of the total condensate number operator. Coherent
states of an annihilation operatar-b are exact eigenstates

of the [c.0] a+b and approximate eigenstates @f+b'.
These coherent states, however, are combinatiofie2pfind
as such they are not in the lowest energy subspadéof
e — EJ PXGU Uy Barere — LJ xal u* u What is more, the matrix elements aft-b are of the order
5152 4 Gls Usp  Psjsisy 22 9L, Us,Usy: O(+/N) which is negligible as compared to the matrix ele-
(15) ments of the number operator. If we project b and its H.c.
on the subspacéll), then their approximate eigenstates for
In Vg and Vo we neglected vertices€C—C+NC and C  large |z| are coherent states|z,0)+ 3|0,z). The decoher-
+C—NC+NC, where C is a condensate and NC is a non-ence effects oaA+b andN¢ put together lead to a superpo-
condensate particle, and their Hermitian conjugates. They argtion of macroscopic “squeezedlike” statesy|S,0)
forbidden by energy conservation due to the gap between the |0,S). This result is by now well established for a single-
condensate mode and the lowest environmental state. component condensafd7]. Finally, the [c.0] a’b+b'a
All the terms inVg o were arranged in the forfitonden-  drives the state out of the pointer subspét®. Its effect is
sate operatd®[environment operatdr Vg contains only supressed by the purity conditi@a<1 and is also negligible
[c.0]'s which are symmetric undea«~b. They act in pre- as compared to the direct effect of theterm in Hs. A
cisely the same way on both components of the superpositiosimilar comment applies to the “out of the subspace” action
and as such they do not destroy coherence between the maif- a'+b'. Therefore, the effect of all these terms Wy
roscopic components. To illustrate this let us calculate amplies that the subspace spanned|Ny0) and|O,N) is no
commutator of the leading-order termVy, with the projec- longer an exact decoherence-free pointer subspace, i.e.,
tor onto the subspace of statefN,0)+ 8|0,N), [Vs.Plajng+glony]#0. The correct pointer subspace

The coefficients are given by the integrals
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would be one spanned by those “squeezedlike” states. How- =Dl Axlp+d-DIAIT0+d,DIA 21

ever, to leading order in fugacity and in the condensate size Po=dsDlAs]p+dsD[Az]p+diD[Adlp D

N, the dominant terms are those depending\gy] the sub- . + + ,

space of ¢|N,0)+B|ON) is (approximately the exact With D[AJp={A'A,p}—2ApA"the Lindblad operator. The

decoherence-free pointer subspace. operators introduced in this expression are defined as
The antisymmetri¢c.0.]'s in Vg act in opposite ways on

the two components; they destroy their quantum coherence.  A;=(4u+2v)(a'a+b'b)+(2v)(a’b+b'a), (22

To illustrate this let us calculate a commutator of the leading

term in Vg with the projector operator onto the subspace _ Tt

a|N,0)+ BlON), Ay=(u+v)(@'+b’, (23)

—(A— ta_pt th_pt
(4u—2v)(a'a—b'b) Az=(4u—2v)(a'a—b'b)+(2v)(a'b—b'a), (29

A,=a’—b'. (25)
®

)
> St Os,asts, T H.C.

Sl ,52

’P[a|N,o>+ﬁ|o,N>1}
The coefficientsc; and d; are proportional to fugacity.
= 2N(4u—2v)(aB*IN,0)(ON|— a* BlON)(N,0)) What is moregs 4/c1 ,~ e ?*# andds 4/d; ,~e 22, As an-
ticipated, the antisymmetric contributions are supressed by a
_ 17) Boltzmann factor due to th®’s. This approximate master
equation confirms our heuristic arguments.
Any asymmetry betweeA andB is a source of decoher-
The commutator iO(N). The occupation numbers of the ence. If, for example, thé\-A and B-B scattering lengths
O’s are suppressed by a Boltzmann faatGexp(—2\f); for ~ were different,usn=u+ du and ugg— éu, then V4 would
2\p>1 theO'’s are unoccupied. As such they cannot scattefacquire extra terms- su. They would show up iri)o with
into condensate particles. It is also impossible to sc&®r  coefficientsd~zusu. The ratio of these to the “symmetric”
into O’s thanks to energy conservation. The unoccui®sl  coefficientsd, ,is su/u (which is approximately 0.03 for the
are irrelevant for decoherence and as such can be neglectgt=1; m-= —1) and [F=2; mg=1) states of ®Rb) as
in V and in the above commutator. This effectively sets thecompared tadg 4/d; ,~exp(—2\p). If sulu is less than the
dangeroud/, to zero and leaves us only witis#0. In the  Boltzmann factor, then this asymmetry is not a leading
absence 00’s the statesy|N,0)+ 8|O,N) are a pointer sub- source of decoherence.
space(or a decoherence-free subspacéhe symmetrized
environment of justS's defines the quantum states of the
components but it does not destroy their mutual coherence. V. DERIVATION OF THE MASTER EQUATION

We derive a master equation by perturbative expansion in
. MASTER EQUATION V or in the coupling constants,v which we regard to be of

The symmetrized environment is a robust idea whose vat—he same order. Vl/e assume the initial density matrit at
lidity does not depend on detailed calculations. Nevertheless: 0 to be a produch(0)=p(0)@ pg of the system{conden-
for the sake of illustration we derivelthy a perturbative ex- Sat8 and environmentnoncondensajedensity matrices. To
pansion inV) an approximate Bloch-Lindblad form master take a more accurate starting point we make a rearrangement
equation for the reduced density matyigt) of the conden- V—V—(V) andHc—Hc+(V) where(---)=Tre[- - - pe]
sate modes. The calculations are long but rather straightfof$ & trace over the environment thermal density matrix at the

ward; their details can be found in Sec. IV. Here we just givelnitial time. The newH differs from the old one by the
the final result: renormalization

®

:
> St Os,asts, T H.c.

Sl ,52

Cod S
P:%[P:HE§T+PS+PO- (18) eg—>egﬁ= eg+(4u+20)2 ngasgs,
S

. . _— 26
HZE"is a renormalized condensate Hamiltonian, (29

eff _y _ S .
HIS"= H+ (H o)+ CaATA L+ CoA LA+ coA A 5+ C4A LA . A= A=A (20) 2 nSags.

19

(---) means an average over an initial environment thermalVe compute"ﬁ(t) up to second order in the perturbation

density matrix anghg and pg, are contributions fronvgand ~ HamiltonianV=Z2;A;®E;, with A; an operator for the con-
Vo, respectively. They read densate an&; one for the environment. The master equation

_ for p(t) alone is obtained by tracinEg(t) over the noncon-
ps=d;D[A;]p+d,D[A,]p, (200  densed modes. The result[Z0]

013607-5



DALVIT, DZIARMAGA, AND ZUREK PHYSICAL REVIEW A 62013607

'(t)_i_[ H ]_LE td Sym ) a(ty=a(0)ex —i—t[eeﬁ—l—N(u +v¢)/2]
p_ﬁp'C2ﬁ2ijng”T % L9 ¢ Uc )
' (35
1 t it
XA (—pll- =5 S [ drgfomtn bm:b(o)eXF’[ TRl N(“c”c)’z]] -
2h° 7T Jo
X[A;(0) A (= 7),p}], (277 ~ We believe that these solutions are qualitatively correct as
. long as the purity factoe<1.
where
s 0 08 B. Symmetric interaction Hamiltonian
s ={E; E.
9i"(n) =({Ei(). B (0)}), 28 The symmetric Hamiltonian can be written as
asyny .y = ([ E. A ~ = -
g (1) =([Ei(7).E;(0)]). @9 Vo= AE + KB +[AE,+ KB, +Hel,  (30)
We have used that after the _rearrangen\_éntV—(V) and_ where we have defined the condensate operators
Hc—Hc+(V), there are no linear terms in the perturbative
expansion becaus®/)=0. We first study the contribution of A,;=(4u+2v)(ata+b'b)+(2v)(atb+bta), (37)
the symmetric term¥g in the interaction Hamiltonian, and
later we shall deal with the antisymmetric ongs. It is easy R.=(4u+2 ta+bh)— (2 h+p' 38
to show that there are no cross terms S-O in the calculation 1=(4ut2v)@a )~ (2v)(a a), (9
of the master equation. A,=(u+v)(a'+b"), (39)
A. Free Hamiltonian 32=(u+v)(aT+bT), (40)
The next step in the calculation is to solve the dynamics
of the free condensate Hamiltonian and the corresponding noncondensate operators
He=(uc—vc)32+2\°M, (30

Ei= 2 ag SIS —2 |ae J2SISs, (A1)
. S1,S2 1 1 S
where we introduced the angular momentum operators

J=1(a'b+b'a), (31 ~E1=Slzsz asr ,52021051—2 |as*,s|20;ros, 42)
Jy:i_(b‘ra_ a'b), (32)
2 E,= slé% Bst 5,5,(SLS,S,+01S,0),  (43)
J,=3(a’a—b"), (39
and discarded constant terms proportional to the total num- E,= > ﬂs,; ’52’83(0;052853—’_8;082053)- 44)

S1.,52,83

ber of particlesN=a'a+b'b [19]. The Heisenberg equa-

tions of motion for the condensate operata($) andb(t) It is clear that the termd; andA; and their corresponding

are environment operators have the same structure, and therefore
et eff + + will give the same qualitative contribution to the master
iha=ega—A"b+(u.a'atvbba, equation. In the following we shall keep only the terms.
. . (34) The expectation values of multiple-point honcondensate
ihb= eg b—\®fa+ (ub’b+v.a'a)b. operators are written in terms of the two-point functions
. : S
These equations cannot be solved exactly\®f+0, when <S;rl(t1)ssz(t2)>: 55182n§18(|/ﬁ)(6517)\)(tlftz)ef reli-tal

the numbers ofi’'s andb’s are not conserved independently

due to the coherent transfer of particles from one state to the . O (1) (ee + N (t1—tp) a2t~y
other. In their mean-field version, these equations correspond{Os,(t1)Os,(t2))= &5 s ng e % "1™ 75 71,

to the well-known macroscopic self-trapping equations, (45)
which have the feature that below a critical “purity” the

oscillations between statésand B are not complete; foe (SL(t1)Os,(t2))=0

<1 the system is self-locked in either of these stf2d3. In

this limit we can seh®" to zero, and for the immiscible case via Wick’s theorem. Here>°=[ze#(<s*») — 1171 are Bose
vc>Uc the ground state oHc corresponds to maximum occupation numbers, and the's are inverse finite lifetimes
eigenstates oﬂg, i.e., pure cat stated1). Also, in this case of the environmental states. We also expand these expecta-
the mean-field solutions are tion values to leading order in fugacity The kernels are
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(E1(7)E1(0)) =(E1(0)Eq(7))*
_ 2 | as: '52|2n§1e(i7'/ﬁ)(651* s,)

x e~ 5 73) + 0(22),

(Eo(T)EN(0))=(Eo(0)E}(7))*

_ Z |IBS’I ,52,53|2e(i7/ﬁ)(651_552_Es3

S1,52,53

S S S
x[2nge” 05,775,775

(o] S (0]
+ n§167 7-(‘ys;[Jr y52+ ’)/53)] + O(Zz),

(46)

+\)

(47)

PHYSICAL REVIEWG® 013607
(EX(T)E2(0))=(E}(0)Ey(7))=0(2?). (48)

Given the kernels and the free evolution of condensate op-
erators, we have to perform the time integrals in E).

We calculate the master equation for late timesy;*.
Hence the exponential decay of the propagators dominates
their behavior, and we can apply the Markovian approxima-
tion, replacing the upper limit in the time integration by in-
finity. This calculation results in two different contributions,
one being a renormalization of the free Hamiltonian,

5HC:C1AIA1+ CzAgAz, (49)

where

-1
1 fi s, — €s))
ci=— 2 |ag ¢|?nS : (50)
PR S +y5) 2+ [ e, €)1
1 - M es — €5, €5, TN+ €5+ N(Ug+v)/2]
2" he 2, 1P sl 25 S+yS+yS)2+{ht + N+ e N(Ugtve) /2]
$1,52.53 (751 Vs, 733) { [esl_ €s,” €5, €y (Uct+ve)/2]}
o M es — €5, €5, 7N~ €5~ N(Ug+v,)/2] .
"0 S 1 )24 {h e — €5, — €5+ N—€X"—N(uc+v)/2]}2 ) 5D
Vs, T Vs, T Vs, s;” €s,” €s, g c T Uc
The other contribution has the Lindblad foldf A]p={ATA,p}—2ApAT and reads
ps=diD[A;]p+d,D[A;]p, (52
where
S, .S
1 Vs, T Vs,
di=—— 2 |ag o3 - ; (53)
h2ss, TNy g )2 [h e~ €)1
MR o[ s Yo, T ¥e,t Vs,
2T 7T 5 s¥ s, n Z
fi2siss 1720 Tys t st ys) P H{h e e, e, A+ g+ N(UH0) 2]}
. Yot st s,
TN 5. s, .0 -1 eff 2" (54)
(731+752+7’s3) +{h [631_532_533"')\_"69 +N(uctve)/2]}
C. Antisymmetric interaction Hamiltonian
The antisymmetric Hamiltonian is
VO:A3E3+A4E4+ H.C., (55)
where now
As=(4u—2v)(a'a—b'b)+(2v)(a'b—b'a), (56)
A4:aT_bT, (57)
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and the corresponding environment operators

_ T
E3‘slz,sz agr 5,08 Ss,, (58)

Es= 2 Bs s,s[(U+0)0L 000 —(u—v)O! S S,

Sl ,52 ,53
+2ug S,04 1. (59
The kernels are

(E3(m)EL(0))=(E3(0)El(7))*

PHYSICAL REVIEW A 62013607

(EX(1)E3(0))=(EL(0)E3(7))=0(2?), (62)

(Eq(T)EL(0))=(E4(0)E}(7))*

= 2 |,Bs’l‘ ,s2,33|2[2(u+v)2n?1

S1,S2,S3

 @liTih)(es, ~ e —653—>\)—r(7§’1+ y32+ y§’3>

2
+2(u—u)2n§1

X e(iT/h)(esl— esz—es3+3)\)—’r(ysol+ 'yg)2+ 'yso3)]'

(63)
— 2 |a,s |2noe(|7'/}’1)(eS 652+2)\)
S1.,Sp
R TN (EN0)E4(n)=(EX(1EL0)=0(z). (64
xe s, 77)+ 0(2?), (60)
(EX(7)E4(0))=(EL(0)E4(7))* The renormalization terms are
=SES |argr o, g el M5y~ 5,2 SHc=C3A A+ C A A, (65)
1092
(S 4.0 2 .
x e s, 77s) + 0(2?), (61)  with
|
ﬁ_l(es —€s,~ ﬁ_1(651—652+2)\)
E | @sy 52 51 2 2_n501 0, S\2.1s-1 2| (69
( s +75) +[ﬁ (651_652_2)\)] (751+ 752) +[h (651_652+2)\)]
1 ﬁ_l[es — €5 — € —)\-I—egﬁ—l— N(uc+v)/2]
Cs=— 2 |Bs’1* ,52,53| 2(u+v)2 s1 2 32_ off 2
h“ s1.5;.53 (ysl-i—'ysz-l—ys) +{f" €5, €5, €, N+ eg +N(Uc+v)/2]}
20 h e, — €5, € +)\—egﬁ—N(uc+vC)/2]
T2(u=v)ng, 2 1 eff 2" 67)
(ysl—}— ys +~ys) +{fi" €5, — €5, €5, 73N — €5 —N(uc+v)/2]}
Finally, the Lindblad part is
po=0d3D[Az]p+dsD[A}]p+dsD[A4]p, (68)
where
S 4.0
Ys, T Vs
:__E|S*522?1 s 2 l1 : 2 (69
f2 5.8, (v 51+ ysz) +[%h (ES —€s, —2N)]
O S
~ 1 751+732
do=— 7 2 lag g - : (70
B2 T (58 4202 [ (e, — et 2N) 12
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O (0] O
Ys, T Vs, T Vs,
—es,~ Mg+ N(uc+vo)/2]}2

1
ds=—— E |:85* S,,S |2 2(u+v)2n§) _
h?siispss L2R 1(7501+ "ysoz‘*'?’soa)z‘*'{ﬁ 1[651_652

O S S
ysl + ysz + 7’53

+2(u—v)%n? . 71
(u=v) Wyotve T ve)? H{h e~ e, €, + 3N+ ef + N(Utv)/2]}2 7y
|
D. Estimate of the decoherence rate
To esti da~ — mm(dm)? dk k3ze e Bri/2m
0 estimate the decoherence rate for our BEC quantum 3 1643 1K1

superposition, let us consider one of the terms in ©8),

namely, p=16v2ds[J,.[J,,p]], which arises from the\, 2m?

term. This term corresponds to elastic two-body collisions == FPEUTv (74

between condensate and noncondensate atoms, and induces

phase decoherence. To this end we first make an estimationy .., = /Z2k-T/m is the thermal velocity of the noncon-
for the coefficientar < that enters ind;. We assume that TV e o
152 densed particles, ande=Ng/V=V 13ze e Atk

we have a large harmonic trap plus the dip located in itSg the gensity of noncondensed particles in the antisymmetric
center. We take as the wave function for the ground state &ates.

Gaussiang(x) =[ Map/ (7%) 1% exp(—mwgr /1), where Given the expression fals;, we can give an estimate for
wgip IS the frequency of the optical trapping potential in thethe decoherence rate. In th&M) basis, withJ=N/2 and

dip. In principle, we should use thermal wave packets for thQ]Z|J’M>:(1/2) (NAo—Ng)|J,M), the master equation reads
wave functions of the noncondensed parti¢&3. However,

due to the strong localization of the condensate in the dip, we b(M M) =160%d3(M—M")2p(M,M")

can approximate the noncondensed particles as plane waves. 5 o )
Then =16m>y(M—M")*p(M,M"). (75

1 iK1 X g-ikyX For the quantum superposition stat¢,0)+|0N), M—M’
ags s, = Zf d3xg?(x) N T =N, so our final estimate for the decoherence rate is

1

h " L |2
=1V exp{ 4mwdip|k1 Kol ]. (72
The onlyO(z) contribution to the amplitude decoherence

On the other hand, the decay ratés much smaller thaw. can come from a term proportional th,. However, under
This lets us replace the last factor @y by 775(?1*1(651 closer inspectionl, turns out to bed(z?). d, comes from a
—€5)), Where we have used the identity 'J%WWZ dep[etiop/grovﬁh_inelastic processlsuch thatanoncondensate

particle in the initial state o6, collides with a condensate
particle and as a result they both end in noncondensate
modess, ands;. For this to happers; must have a suffi-
ciently high energy to overcome a gap between the conden-
sate mode and the environmental modes. Thus in this case

t e~ 167° N2, (76)

N
477a2vaT

+x2)]=m8(x). Finally, replacing the sum over momenta by
the continuum expressioh;— V[ d3k=V[dQdkk?, and us-
ing the free dispersion relatiosy=72k?/2m, we find

dom mm J diykze Pre A7k ng =0(z°) and notO(2).
16h3
V. DISCUSSION
XJ d02,d0ge (I, (79 e aim of this i “longevity”
' paper was to discuss the “longevity” of

Schralinger cats in BEC’s. We have shown that, while in the
. - - standard traps decoherence rates are significant enough to
where « is the angle between the two vectdrs and k; Erevent long-lived macroscopic superpositions of internal

;?rr‘rcees?ﬁgilgr? dtaon;g(taet\iﬁothsgacljtiteri(:,dvgfn%%g?iigze?tsp?rtlg: tates of the condensate, the strategy of trap engineering and
P y ' yp ymmetrization of the environment will be able to deal with

linear dimension beind gip= VA/Mwgip, then | i<l ierman that issue

wherel jerma= VA 2/2mksT is the thermal de Broglie wave- What remains to be considered is how one can generate
length. This means that in the above expression the firstuch macroscopic quantum superposition, and how one can
(therma) exponential factor dominates, and we can approxi-detect it. The issue of generation was already touched upon
mateds by in Refs.[7,8]. We have little to add to this. However, in the
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context of the Gordon and Savage proposal, it is fairly cleaternal state of the atoms in the versusB basis would not
that the time needed to generate the cat state would have mofluence this prediction. We need to check separately
be short compared to the decoherence time. If our estimateghether the cat state was indeed coherent. To do this, one
of Eq. (1) are correct, a symmetrization procedure appeargould evolve the system “backwards.” However, this is not
necessary for the success of such schemes. really necessary. For, as Gordon and Savage point out, when,
Detection of Schrdinger cat states is perhaps a morejn their scheme, we let the system evolve unitarily for more
challenging subject. In principle, states of the forftN.0)  or less twice the time needed for the generation of the cat
+|0N))/\2 have the character of GHZ states, and onestate, it will approximately return to the initial configuration.
could envision performing measurements analogous to thosghys, we can acquire strong evidence of the coherence of the
suggested 23] and carried out ihi24], where a four-atom  ¢at provided that this unitary return to the initial configura-
entangled state was studied. However, this sort of paritytion can be experimentally confirmed.
check strategy, appropriate for<10, is likely to fail when These are admittedly rather vague ideas, which serve
N is larger, or when(as would be the case for the “qua- more as a “proof of principle” than as a blueprint for an
sisqueezed” states anticipated hgt&]) N is not even well  experiment. Nevertheless, they may, we hope, encourage

defined. o more concrete investigation of such issues with a specific
Strong circumstantial evidence can nevertheless be olzxperiment in mind.

tained from two measurements. The first one would consist

of preparation of the cat state, and measurement of the inter-

nal states of the atoms. It is expected that_in e_ach instance all ACKNOWLEDGMENTS

(to within the experimental errpwould be in eitherA or B

states. However, averaged over many runs, the numbers of We are indebted to E. Cornell, R. Onofrio, E. Timmer-
these two alternatives would be approximately equal. Decomans, and especially to J. Anglin for very useful comments.
herence in which the environment also “monitors” the in- This research was supported in part by NSA.
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